tentukan dy/dx dari fungsi2 berikut: 1. y= 9 - 3x^-1 + 6x^-2 2. y= ( 3x^2 - x ) ( 2 + x^-1) 3. y= ( 3x^2 - x ) ( 5x + 2 / x ) 4. y= ( 5x + 2 / x )^2
Matematika
amiawalliyah
Pertanyaan
tentukan dy/dx dari fungsi2 berikut:
1. y= 9 - 3x^-1 + 6x^-2
2. y= ( 3x^2 - x ) ( 2 + x^-1)
3. y= ( 3x^2 - x ) ( 5x + 2 / x )
4. y= ( 5x + 2 / x )^2
1. y= 9 - 3x^-1 + 6x^-2
2. y= ( 3x^2 - x ) ( 2 + x^-1)
3. y= ( 3x^2 - x ) ( 5x + 2 / x )
4. y= ( 5x + 2 / x )^2
1 Jawaban
-
1. Jawaban Matrixisme
1) y = 9 - [tex]3x^{-1}[/tex] + [tex]6x^{-2}[/tex]
dy/dx = [tex]3x^{-2}[/tex] - [tex]12x^{-3}[/tex]
2) y = ([tex]3x^{2}[/tex] - x)(2 + [tex]x^{-1}[/tex])
u = [tex]3x^{2}[/tex] - x
u' = 6x - 1
v = 2 + [tex]x^{-1}[/tex]
v' = [tex]-x^{-2}[/tex]
y = uv
dy/dx = u'v + uv'
dy/dx = (6x - 1)(2 + [tex]x^{-1}[/tex]) + ([tex]3x^{2}[/tex] - x)([tex]-x^{-2}[/tex])
dy/dx = 12x + 6 - 2 - [tex]x^{-1}[/tex] - 3 + [tex]x^{-1}[/tex]
dy/dx = 12x + 1
3) y = ([tex]3x^{2}[/tex] - x)(5x + [tex]\frac{2}{x}[/tex])
u = [tex]3x^{2}[/tex] - x
u' = 6x - 1
v = 5x + [tex]\frac{2}{x}[/tex]
v' = 5 - [tex]\frac{2}{x^{2}}[/tex]
y = uv
dy/dx = u'v + uv'
dy/dx = (6x - 1)(5x + [tex]\frac{2}{x}[/tex]) + ([tex]3x^{2}[/tex] - x)(5 - [tex]\frac{2}{x^{2}}[/tex])
dy/dx = [tex]30x^{2}[/tex] + 12 - 5x - [tex]\frac{2}{x}[/tex] + [tex]15x^{2}[/tex] - 6 - 5x + [tex]\frac{2}{x}[/tex]
dy/dx = [tex]45x^{2}[/tex] - 10x + 6
4) y = [tex](5x + \frac{2}{x})^{2}[/tex]
dy/dx = 2(5x + [tex]\frac{2}{x}[/tex])(5 - [tex]\frac{2}{x^{2}}[/tex])
dy/dx = 50x - [tex]\frac{20}{x}[/tex] + [tex]\frac{20}{x}[/tex] - [tex]\frac{8}{x^{3}}[/tex]
dy/dx = 50x - [tex]\frac{8}{x^{3}}[/tex]
#Jadikan jawaban terbaik yaa....(capek jwb dan ngetiknya),....hehehe....